
NASA-CR-193132

w

Arachnid Document 6.0

CDM Analysis

Li

i L

w

qml

June 10, 1993

Sponsored by

NASA/JPL
under the

Small Business Innovation Research Program
Contract NAS7-1156

Produced by:

MIMD Systems, Inc.
1301 Shoreway Road
Belmont, CA 94002

O_
,,¢
P.4

N
!

O"
Z

t_

t_E

.ale

_O
X

Z

r_ h.
r_OQ.
P-4

F-4
I ,-

I '-E

Uu
z _)..

u_

U
e.

co
p..

O

rq
,,O

The views and conclusions contained in this document are those of the authors and

should not be interpreted as representing the official policies, either expressed or implied,
of NASA.

ABSTRACT

i IE __

m

L L

r

m

7_

w

w

The C Data Manager (CDM) is an advanced tool for creating an object-oriented database and

for processing queries related to objects stored in that database. The CDM source code was

purchased and will be modified over the course of the Arachnid project. In this report, the

modified CDM is referred to as MCDM.

Using MCDM, a detailed series of experiments was designed and conducted on a Sun

Sparcstation. The primary resulis and analysis of the CDM experiment are provided in this

report. The experiments involved creating the Long-form Faint Source Catalog (LFSC)

database, and then analyzing it with respect to: (1) the relationships between the volume of

data and the time required to create a database; (2) the storage requirements of the database

files; and (3) the properties of query algorithms.

The effort focused on defining, implementing, and analyzing seven experimental scenarios:

1. Find all sources by right ascension, RA;

2. Find all sources by declination, DEC;

3. Find all sources in the right ascension interval (RAt, RAz);

4. Find all sources in the declination interval (DEC1, DEC:z);

5. Find all sources in the rectangle defined by (RA1, RA2, DEC 1, DECz);

6. Find all sources that meet certain compound conditions; and

7. Analyze a variety of query algorithms.

Throughout this document, the numerical results obtained from these scenarios are reported;

conclusions are presented at the end of the document.

"" i

E =

w

WInD

m

L_

W

= .

w

w

1.0

2.0

3.0

4.0

5.0

TABLE OF CONTENTS

INTRODUCTION

CDM OVERVIEW

2.1 Basic Functionafity
2.2 Data Fde Types
2.3 Database Creation
2.4 List of Functions

DATABASE CREATION

3.1 Testbed Database
3.2 Database Creation
3.2 Database Storage Requirements

DATA RETRIEVAL

4.1 Sequential Access
4.2 Random Search
4.3 Object Access

LFSC DATA QUERIES

5.1
5.2
5.3

Sources in a Specified Region
Compound Queries
Experunental Results

1

3

3
5
5
7

9

9
9

12

13

13
13
14

15

15
18
30

6.0 CONCLUSIONS 48

w

APPENDICES

A REFERENCES 50

r_

1.0 INTRODUCTION

Bg
= =

w

w

I[_

w

li

The C Data Manager (CDM), supplied by Database Technologies (Brookline, Massachusetts)

consists of approximately 100,000 lines of C language source code for creating databases and

conducting queries. Arachnid employs this system as a database engine to create a complete

object-oriented system for querying massive astronomical databases.

The CDM source code is undergoing modification and augmentation for the Arachnid project
J

in order to form the basis of a graphical system by which users can define and execute

complex queries on the Long-form Faint Source Catalog (LFSC) database or on other large-

scale databases. The system that is resulting from the on-going modifications is referred to as

MCDM.

The motivation for conducting the CDM experiment was to:

1. Determine the baseline efficiency of CDM;

2. Improve the efficiency of CDM on complex queries;

3. Develop and test various query algorithms;

4. Reduce the response time by developing optimal versions of the algorithms; and

5. Estimate the efficiency of CDM in the context of Arachnid.

Section 2 of this report contains a brief description of CDM. Then, Sections 3 through 5

discuss the experimental scenarios and present the experimental results. The experiments

reported herein focus on: (1) obtaining data on the time required to create the LFSC; (2)

exploring the relationships between the volume of data and the database creation time; (3)

examining the storage requirements for database files; and (4) determining the execution times

for various ways of carrying out certain queries on the database. Although most of these

queries are "simple," it is vital that they be done as efficiently as possible.

The queries used in conducting the experiments are as follows:

1. Find all sources by right ascension, RA;

tram
N

w

==

Ei

m,l

w

=_-

2. Find all sources by declination, DEC;

3. Find all sources in the right ascension interval (RA1, RA2);

4. Find all sources in the declination interval (DEC 1, DECz);

5. Find all sources in the rectangle defined by (RA 1, RA 2, DEC 1, DECz);

6. Find all sources that meet certain compound conditions; and

7. Analyze a variety of query algorithms.

The experimental results are listed in numerous figures and tables. The conclusions derived

from conducting the experiments are presented in Section 6.

M

W

!il

W

=:=

rL=

W

m

m
m

m
m

- 2

2 :

2.0 CDM OVERVIEW

: 7_;_

7._

W

w

CDM is an advanced tool for creating, querying, and maintaining object-oriented databases.

CDM supports both C and C++, and runs in a multi-user environment on most commercial

UNIX platforms, as well as in a single-user mode on PCs running DOS.

One of CDM's primary design features is that it employs a B-tree approach to provide two

data access methods: (1) an Indexed Sequential Access Method (/SAM); and (2) a network-

type approach. CDM also has features that allow inheritance of object structure, information

hiding, and dynamic arrays. As'part of the Arachnid project, modifications to the CDM

source code were made to provide programmers with capabilities to create, copy, delete,

structure, and modify large static databases, such as the LFSC.

CDM's high-level interface is built on a file manager, which hides all f'fle management details

from programmers. In turn, the fde manager provides fast and flexible access to data, as well

as compact data storage. The file manager uses a small set of standard C run-time functions

for manipulation of data in both files and RAM.

In CDM, data is stored as objects, with each object containing one or more variable-length

attributes. Key attributes contain search keys, data attributes, and one relationship attribute

per object (which is used to maintain relationships). Dynamic arrays conveniently accomplish

the task of passing attributes. Objects are searched by keys or accessed by relationships.

CDM is often used in CAD/CAM, artificial intelligence, text processing, and graphics

applications.

m

m

2.1 Basic Functionality

2.1.1 Types of Objects

The database schema is the set of type definitions in which each object type describes the type

and number of attributes in an object. Each object type is assigned a unique number for future

reference and is declared at run-time by the CDM function Dej'TypeO.*

* CDM functions axe shown in italics, while variables are placed in bold text.

k_

r_

To read the type definition of an existing object type, CDM provides Read_peO. CDM also

allows dynamic database schemas, whereby an object type definition can be changed (with all

existing objects of this type automatically converted to the new format) via the use of

ChgTypeO.

= =

w

W

im

t_

li3

Imm

w

_==

[]
W

2.1.2 Entity-Relationship and Network Model

In addition to keys, objects may be referenced by an object ID, which is a unique number

assigned to an object when it is created. Object IDs are used to implement networks of objects

and to relate objects to each other. CDM provides a complete interface for the network

database model; for example, it supports many-to-many relationships -- a feature not available

in relational databases. Function UpdateRelO is used to add/update or delete one-to-many

relationships between the objects. The network search is given by the function FindRelO,

which finds all objects related to a given object.

2.1.3 Dynamic Arrays

In standard C, the size of a regular array is determined by a declaration in the C source.

Therefore, a programmer must estimate the amount of storage required by a program at run-

time. CDM supports dynamic arrays, which are allocated in blocks, as needed.

Dynamic arrays are maintained by special macros that add, insert, delete, and move elements.

The elements may be of any C type, including complicated structures. All elements are

located in contiguous memory and use dynamic arrays to handle variable size attributes.

2.1.4 Object Access

CDM provides four functions that provide sequential access to objects of a given type by a

given key.

o FirstObjO locates the first object;

o LastObjO locates the last object;

o PrevObjO locates the previous object; and

o NextObjO locates the next object.

,,m.

4

7 4

W

V_J

till#

m

t--J

m

t_

F

m

m

W

[]

In all cases, the object selected becomes the current object, whose contents can then be

obtained by using GetCurO. An object can be deleted via DeIeteObjO.

In CDM, random access to an object is achieved via FindMatchO, which finds all objects with

a specified set of key values.

CDM limits a program to having one database open at any one time. The commands

OpenCDMO and CloseCDMO open (and create if necessary) and close the database,

respectively. SaveCDMO incrementally saves the database; CheckCDMO checks the

consistency of the database on disk; and RevertCDMO lets the programmer retrieve the last

version that was saved on disk.

2.2 Data File Types

CDM creates and maintains four database files on the disk for each database:

. A data file, which carries an extension of .dat, stores all objects on disk. The file is

based on a proprietary format and is specially designed to handle variable length

objects efficiently.

2. An index file contains a B-tree with indexes and pointers to corresponding objects in

data file. Index files carry an extension of .idx.

3. A type definition file contains descriptions of object types defined by a program.

These fries carry an extension of .def.

4. An inf0rm_tion file contains information about the data file. Information files have

an extension of .inf.

CDM automatically reclaims storage space when objects are deleted. In order to reduce disk

access time, recently referenced data is kept in dynamically allocated buffers. Virtual memory

algorithms are used to accomplish data transfer to and from disk files.

2.3 Database Creation

Creating a database is a two-step process. First, the programmer must define the database

schema; this design, in fact, is the single most important factor in determining the operational

efficiency that the resulting system will achieve. An analogous situation arises in the design of

the database schema for implementation of a Relational DBMS. In that case, a design that is

5

r_

4

L s

i -
J-za
w

W

normalized (i.e., placed in first, second, third -- but not necessarily fourth -- normal form) is

virtually guaranteed to achieve a higher level of performance than is a database that is not so

constructed. Although object-oriented theory has yet to provide a universally accepted

classification that is parallel to the forms of normality that are provided by relational theory, a

design that is not well-planned can easily lead to poor performance.

The second step in the database creation process is to input the data, a process that is normally

done electronically from a file or a series of files. For a massive database, this process can be

time consuming, largely because it requires a considerable amount of effort to verify the data.

A CDM data model is designed by the programmer via the data schema; a data structure is

selected by a well-defined syntax in the application language (e.g., a specification of key vs.

non_key, or unique_key vs. non_unique_key). The data structure is then created in CDM by

using the following functions:

W

I

int Defl'ype (rec_def, atrdef, def_data)

REC_DEF *rec_def;

A TR_DEF atrdef[];

Handle def_dataD;

w

M

lit

B

tin

This function receives type information given by two structures, REC_DEF and ATR_DEF,

which are defined in the (required) CDM header files. REC_DEF specifies the number of

attributes for the type, while ATR_DEF contains information on each attribute. The argument

clef_data is an optional array of handles to a dynamic array containing additional information

on attributes (e.g., their names). Function De tType returns a type ID, which can later be used

to refer to the type.

Once the data structure is defined, the database can be created by the following CDM function.

int OpenCDM (create, prefix)

int create;

char *prefix;

m Here, create is a flag that indicates whether the program wants to open or open/create the file,

and prefix is the name of the database file. If, for example, prefix is set equal to "FSC', then

the four CDM database files would be:

6

-)

Ill#

--2

_zJ

W

m.-ath--

W

= =

Iml
m

M

7_

mm

w

o FSC.dat;

o FSC.idx;

o FSC.def; and

o FSC.inf.

The contents of these files were described in the previous section.

2.4 List of Functions

Listed below are CDM's primary functions. The reader is referred to C Data Manager User's

Guide I for a complete description of these functions.

Database ManiDulation

OpenCDM
SaveCDM
CloseCDM
RevertCDM
CheckCDM

Open/Create database
Save database
Close database
Revert database

Check database consistency

Entity Relationship

UpdateRel Add/delete one-many relationships
FindRel Find related objects

Object Manipulation

FirstObj
LastObj
NextObj
PrevObj
ZddObj
DelmatchObj
FindMatch

GetObj
UpdObj
DeleteObj
GetCur

Find first object of given type
Find last object of given type
Find next object of given type
Find previous object of given type
Create new object
Delete all objects with matching key
Find object with matching key
Read object attributes
Update object
Delete object
Read type definition

Type Definition

Defl_ype
Chgrype
ReadType

Define new type
Change type definition and convert all object of this type

Read type definition

7

E

t_

t_

r--

W

Dynamic Arrays

NEW AR
ADD-ELS
INS _LS
FR17,AR
MO_ ELS
DEL ELS
EL
PEL
RESET AR
SIZE ,_L

Create new dynamic array
Add elements to dynamic array
Insert elements in dynamic array
Free dynamic array
Move elements
Delete elements

Value of an element in dynamic array
Pointer to an element in dynamic array
Reset dynamic array
Size of element in dynamic array

L4

EJ

w

W

U
W

w

8

3.0 DATABASE CREATION

W**J

_k__!=

W

liJ

m

3.1 Testbed Database

A data tape containing the LFSC database was supplied to MIMD Systems by the Infrared

Processing and Analysis Center (IPAC) at NASA/JPL. 2,3 The database, which was

approximately 240 MB in size, was then transferred to a SUN Sparcstation, and a disk file

containing 30 MB of this data was created. It was this sub-set of the entire LFSC database that

was used as the testbed for conducting CDM experiments.
r

The testbed database contained 21,846 sources, along with their associated attributes.

Although the testbed database was substantially smaller than the databases on which NASA

will eventually apply Arachnid, it was still large enough to conduct representative experiments

and obtain results that can be accurately extrapolated to larger databases.

3.2 Database Creation

The format of the LFSC database was described in a preceding document. 4 This format was

maintained in the creation of the testbed database.

The CDM database creation procedures were tested for databases of 20 different sizes and the

creation times were recorded. Table 1 presents the creation time (Te) for each of these sizes,

while Figure 1 presents the results graphically. Following the experiments with the

incremented database sizes, the full testbed was created. The time required was 9,300

seconds, and was consistent with the earlier results.

A detailed analysis of the experimental data is shown in Table 2. The analysis shows that the

time CDM requires to create a database is:

Tc _ n.lg(n)

where n is the number of sources. This dependence is "reasonable" for databases of the size

used in this study. It also indicates that the full LFSC catalog, which contains approximately

173,000 sources, will require about 26 hours to be put into CDM format. (This time would be

substantially less if a more powerful Sparcstation were to be used.) However, given that such

a process only occurs once, the time to create the database is acceptable. Finally, it is

9

L

important to note that no algorithm for creating a database with an index file can be better then

the theoretical rate of O[n-lg(n)].

y z

_z

_E:__=

w

W

W

U

Number of Sources Time (sec)

1000
2000
3000

4OOO
5OOO
6OOO

7OOO
8OOO
9OOO

10000
11000
12000

13000
14000
15000

160OO
17000
18000

19000
20000

236
494
762

1050
1353
1714

2054
2411
2870

3292
3762
4149

4609
5076
5571

5988
6524
7081

7641
8241

Ip

i--'m

Table 1

Relationship between the number of sources
and the time required for database creation

No. of sources (ni) No. of sources (nj) ni-lg(n.O/nj-lg(nj) Ratio of creation times (tilt j)

L
10000
15000
15000
20000

5000
5000
10000
15000

2.162
3.387
1.566
1.373

2.433
4.117
1.692
1.474

D

Table 2

Database creation time scaling

10

w

w

W

D

m

m

L,

If...J

(1)

(D

_E3

_) O
j::: 4-

t- (D
.'--

_rrrn
O_
l-

t-
O

m

rr

0 0
0 00

(spuooas

0 0 0 0
(C) _ O4

O0 _x) euJ!l uo!_eeJo eseqe;e(]

if)
04

o

.C

£

b_

.(3
E

Z

tO

0

=

k,,,

L

3.3 Database Storage Requirements

The disk space required by CDM to create the testbed database was 36.5 MB, approximately

120% of the size of the testbed LFSC database (30 MB). The size of the index file was found

to be approximately linear with respect to the number of sources, while the sizes of the type

and information files are insignificant. Consequently, the complete LFSC database should

require approximately 290 MB for storage as a CDM database.

F_

W

m

File Name Memory Space (bytes)

data file
index file

type file
information file

fsc.dat
fsc.idx
fsc.def
fsc.inf

29,253,632
7,234,048

1,024
57,138

Total 36,545,842

w

LJ

w

Table 3

Disk space required for database storage

w

f_
E=t

L--

w

12

4.0 DATA RETRIEVAL

w

w

CDM supports ISAM, random search, and relative attribute retrieval.

are discussed in this section.

These access methods

4.1 Sequential Access

CDM has functions to find and access objects sequentially: FirstobjO and LastobjO locate the

first and last object of a given type by a given key, respectively. Examples of their usage are

presented below:

1....*

int Firstobj (obj-type, ind-num, key-hdl, key-val)

int LastObj (obj-tpe, ind_num, key_hdl, key_val)

int obj-type; specifies the object type

int ind-num; contains the index number

Handle key_hdl; handle to the dynamic array storing the key value

char *key_val; storage for the key value

I

H

For all functions, if the specified object is found, then it becomes a current object. The

functions NextobjO and PrevobjO can be used to find the next and previous objects of current

type and index number, respectively.

4.2 Random Search

In CDM, a random search is an indexed search, which is accomplished by the function

FindMatchO. An example of its usage is:

H int F/nd Match (obj_type, rmd_which, ind_num, key_hdl, key_val, obj_set)

int obj_type; specifies the object type

int f'md which; specifies the condition (e.g. "=" "< ", "> ")

int ind_num; contains the index number by attribute order

Handle key_hdl; is the search value in the dynamic array

char *key_val; is the search value in the regular array

REC_ID **object; is the returned set of IDs for the objects found

13

w

H __ g It _ P It IIIn practice, the random search by a given key value and an operand (e.g., -, > ") is

not convenient for interval searches, such as Ii _ key_<lj. The Arachnid project team modified

the CDM source code to handle interval searches more efficiently. In MCDM, the interval

random search can be implemented directly by calling a function with the interval boundary as

its arguments.

4.3 Object Access

CDM supports an extremely fast and convenient function to access related objects: FindRel.

The format for using FindRel is shown below.
i

w

int FindRel (reltype, obj-type, rel_atr, recs, off)

int rel_type; specifies relationship type

int object_type; specifies object type of related objects to be found

Handle rel_atr; obtains relationship attribute of the source

REC_/D **recs; obtains dynamic array to return related object IDs

unsigned int*off, obtains the offset in the relationship attribute

where the relationship is found.

t !

[!!J
I-=4

l

14

w

5.0 LFSC DATA QUERIES

L4

z 2

L_

_j

LFSC data queries are designed to meet the requirements set forth in Report #5 4.

involve attribute retrieval for the following cases:

Such queries

1. Sources by name;

2. Sources by RA and DEC;

3. Sources by flux density (fnu*);

4. Sources by ratios;

5. Sources by galactic latitude (g/at);

6. Sources in an area; and

7. By algebraic condition.

5.1 Sources within a Specified Region

Arachnid allows sources to be found within the boundaries of two geometric shapes: an ellipse

and a rectangle. To find sources within an ellipse, the user must specify the ellipse's axes and

orientation. To fred sources in a rectangle, the user must specify the rectangle's boundaries,

which are put in the form (RA1, RA2) and (DEC 1, DEC-z).

We considered three ways to execute a query to find all sources in a rectangle, where the

rectangle's conditions are defined as RA 1<RA <RA 2 and DEC 1 <DEC- DEC2.

5.1.1 Select Optimal Condition Query

The first method analyzed was the selection of one of the four limits:

RA1 _ RA

RA _<RA 2

DEC 1 < DEC

DEC __ DEC 2

15

W

W

L

w

W

r-t

-- i

! Wm_

H

t-2

CDM should select one of the limits so that the response time is minimal. After being queried

by CDM for one limit, an 113 set is provided. The attributes of the object with that ID can be

taken and examined. Usually this choice is undesirable, but if the proper condition is selected,

then there may be only a few returned objects. In practice, retrieval of the source ID by one

condition is rapid. (Table 29 presents the results of a study of such query times.) However,

taking the sources' attributes by ID and then comparing the conditions and the attributes is

slow in both absolute and relative terms, as shown in Table 30.

5.1.2 Interval Query and ID Set Comparison

The second method examined waS a two-interval query by MCDM. The first query is

according to the condition:

RA 1 _ RA _ RA2,

while the second query is specified by the condition:

DEC_ _ DEC < DEC 2.

Two ID sets are provided, with the resulting set intersection providing the IDs of the query.

The experimental results show that executing a query by intervals is faster by MCDM, and

sorting IDs and then comparing the intersection of two ID sets is very fast. Table 4 presents a

comparison of these methods.

A discussion of the algorithm for finding the intersection of two sets is necessary. The ID set

provided by MCDM (or by CDM) is in the order of the key values. The two ID sets from the

interval (P,A1, RA z) and (DEC1, DEC. z) query by MCDM are ordered according to RA and

DEC separately. Clearly, this order index has no relevance for comparing the intersection of

the two sets; the two order indexes have different types of attributes. Furthermore, the ID is

the pointer to the address of the response object; it is not the true key value itself.

Consequently, the ID set is not ordered for the comparison for intersection.

The algorithm for finding the intersection of two non-ordered sets divides into three alternative

cases. The first alternative is to compare the IDs sequentially. In this case, the number of

operations is O[n-m], where one set contains m IDs and the other set contains n IDs. The

second alternative is to take one set in order (e.g., the set containing the m IDs). Here, the

number of operations is O[n-lg(m)]. The third alternative is that both sets are already ordered

-- 16

andtheoperationsarereducedto O[n+m]. Note thatthesortingorder for a setof n elements

requiresanumberof operationsat leastof O[n-lg(n)].

w

KJ

i i-,

W

Box Number

1
2
3

4
5
6

7
8
9

10
11

Responses

77
0

108

3329
1184
4384

3101
2533
1446

774
21846

Method #1

Time (sec)
Maximum Minimum

820 3
832 < 1
701 14

601 57
473 184
698 162

482 169
815 136
810 98

654 9O
828 169

Method #2

Time (sec)

5
19
24

16
26
27

26
19
15

15
35

Method #3

Time (sec)

29
19
26

53
72

102

125
150
63

67
155

U

W

ii _:d

Table 4

Query Times

These three alternatives have computational complexities of O[n-m], O[(n + m).lg(m)], and

O[(n+m)+n-lg(n)+m-lg(m)], respectively. The difference in computational complexity

between the second and third approaches is:

d = (m + n). [Ig(n) -lg(m)] > 0

Usually m and n satisfy the inequality:

(n + m) • lg(m),, (n- m)

Sample computations show that the sorting and comparison times are faster than taking the

attributes of an object by ID and examining the conditions; hence, the first two alternatives are

good for sorting and comparison.

17

lit

w

r

5.1.3 Select Optimal Interval Query

An optimal interval may be selected from two intervals, (RA I, RA 2) and (DECI, DEC2), by

considering their lengths. The idea is first to take an optimal interval, for example (RA l,

RA2) , and then to perform the query, finding all sources in this interval by MCDM and

obtaining an ID set. Then, the attributes of the object with the ID can be taken and examined

for other conditions, with the appropriate objects kept.

Unfortunately, the sources are not uniformly distributed in the domain. However, files could

be created that give the approximate density of sources for any range of either RA or DEC.

Without such a modification this alternative has to examine the attributes of the object -- a

process that is generally slow. In fact, the numerical results show that this method is slower

than the second alternative, above. (See Tables 5 through 15.)

5.2 Compound Queries

A typical query on a catalog is a compound query. For example, find all sources that meet the

criteria:

(fnu_*)/(fnu_ x) > u,

(fnu_A) > v, and

I glatl > w.

In general, a compound query is one in which all sources that meet a set of m conditions are

found. Such conditions are denoted by: C l, Ca,..., C m.

There are three alternatives:

1. Retrieve all sources that meet the condition

°

(fnu_*)/(fnu_x) > v,

where v is a given value.

Retrieve all sources that meet the condition

(fnu_A) > u,

where u is a given value.

18

METHOD !

w

Condition

Responses

Query Time (sec)

Sources in Box

Attribute Compare
Time (sec)

Total Time (sec)

RA _ 0.0

21846

40

77

264

304

RA < 10.0

3618

4

77

22

26

DEC > -90

21846

34

77

786

820

DEC ___-80

337

1

77

w

w

w

w

METHOD 2

Condition

Responses

Query Time (sec)

Sorting Time

ID Compare
Time (sec)

Sources in Box

Total Time (see)

0_RA<10

<1

77

5

3618

5

<1

-90 < DEC <-80

337

<1

<1

METHOD 3

Condition

Responses

Query Time (see)

Attribute

Compare Time
(sec)

Sources in Box

Total Time (see)

O_<RA<IO

3618

4

25

77

29

W

Table 5

Query Time for (RAI, RA2, DEC l, DEC2) = (0, 10, -90, -80)

_" 19

METHOD 1

[]

N

Condition

Responses

Query Time (sec)

Sources in Box

Attribute Compare
Time (see)

Total Time (see)

RA > 160

0

<1

0

0

<1

RA _< 180

21846

29

0

160

189

DEC > 80

302

1

0

11

12

DEC _< 90

21846

37

0

795

832

METHOD 2 METHOD 3

i

U

=

W

w

_5

Condition

Responses

Query Time (see)

Sorting Time

ID Compare
Time (see)

Sources in Box

Total Time (sec)

160_<RA_< 180

0

18

<1

80 _<DEC _<90

302

<1

<1

<1

Condition

Responses

Query Time (see)

Attribute

Compare Time
(see)

0

19

Sources in Box

Total Time (see)

160<RA_< 180

0

18

<1

0

19

r:

--=

Table 6

Query Time for (RA D RA 2, DEC l, DEC 2) = (160, 180, 80, 90)

- 20

METHOD 1

w

--4

w

N

W

u

Condition

Responses

Query Time (sec)

Sources in Box

Attribute Compare
Time (sec)

Total Time (see)

RA >50

1065

1

108

13

14

RA<60

21846

28

108

156

184

DEC _ 30

5831

13

108

213

226

DEC _< 40

18319

32

108

669

701

-=__

,H

[]

W

w

r

METHOD 2

Condition

Responses

Query Time (sec)

Sorting Time

ID Compare
Time (sec)

Sources in Box

Total Time (sec)

50 ___RA _<60

1065

19

<1

<1

108

24

30 < DEC < 40

2304

5

<1

METHOD 3

Condition

Responses

Query Time (sec)

Attribute

Compare Time
(sec)

Sources in Box

Total Time (sec)

50<RA<60

1065

19

7

108

26

w

Table 7

Query Time for (RAI, RA2, DEC l, DEC2) = (50, 60, 30, 40)

21

E

METHOD 1

w

1E±_

Condition

Responses

Query Time (sec)

Sources in Box

Attribute Compare
Time (sec)

Total Time (sec)

RA_0

21846

4O

3329

261

301

RA _<20

7446

10

3329

41

57

DEC _ -30

15753

28

3329

570

598

DEC _< 30

16015

29

3329

581

610

w

METHOD 2 METHOD 3

w

w

L_

W

w

[]
w

u

W

Condition

Responses

Query Time (see)

Sorting Time

ID Compare
Time (sec)

Sources in Box

Total Time (sec)

0_<RA_<20

7446

6

<1

-30 _<DEC _<30

9922

9

<1

<1

Condition

Responses

Query Time (see)

Attribute

Compare Time
(see)

3329

16

Sources in Box

Total Time (see)

0_<RA_<20

7446

6

47

3329

53

m

D

Table 8

Query Time for (RAI, RA 2, DEC 1, DEC 2) = (0, 20, -30, 30)

H
22

= =

METHOD 1

W

Condition

Responses

Query Time (sec)

Sources in Box

Attribute Compare
Time (sec)

Total Time (sec)

RA :>20

14400

13

1184

,171

184

RA <60

21846

29

1184

144

173

DEC > -10

12359

23

1184

450

473

DEC _< 0

11176

21

1184

406

427

METHOD 2 METHOD 3

D

W

r_

w

W

w

Condition

Responses

Query Time (see)

Sorting Time

ID Compare
Time (see)

Sources in Box

Total Time (see)

20_<RA_<60

14400

18

<1

<1

-10<DEC<0

1689

7

<1

Condition

Responses

Query Time (sec)

Attribute

Compare Time
(see)

1184

26

Sources in Box

Total Time (see)

-10<DEC<0

1689

6

66

1184

72

Table 9

Query Time for (RAI, RA2, DEC1, DEC2) - (20, 60, -10, 0)

23

METHOD 1

w

Condition

Responses

Query Time (sec)

Sources in Box

Attribute Compare
Time (sec)

Total Time (sec)

RA _ 20

14400

13

4384

174

187

RA <50

20781

27

4384

135

162

DEC > 0

10670

21

4384

386

407

METHOD 2 METHOD 3

DEC < 40

18319

33

4384

665

698

W

= ,

= ,

w

L

z

L_m

Condition

Responses

Query Time (sec)

Sorting Time

ID Compare
Time (sec)

Sources in Box

Total Time (see)

20<RA_50

13335

18

<1

<1

0 _<DEC < 40

7143

8

<1

Condition

Responses

Query Time (see)

Attribute

Compare Time
(sec)

4384

27

Sources in BOx

Total Time (see)

20<RA<50

13335

18

84

4384

102

w

Table 10

Query Time for (RA 1, RA 2, DEC 1, DEC2) = (20, 50, 0, 40)

24

METHOD 1

F_
w

r_
r=1

Condition

Responses

Query Time (sec)

Sources in Box

Attribute Compare
Time (sec)

Total Time (sec)

RA>_0

21846

40

3101

,264

304

RA <60

21846

29

3101

140

169

DEC >__-10

12359

23

3101

451

474

DEC _< 10

12588

24

3101

458

482

METHOD 2 METHOD 3

L

w

= :

1.

Condition

Responses

Query Time (sec)

Sorting Time

ID Compare
Time (sec)

Sources in Box

Total Time (see)

0_<RA___60

21846

17

<1

<1

3101

26

-10_DEC< 10

3101

7

<1

Condition

Responses

Query Time (see)

Attribute

Compare Time
(see)

Sources in Box

Total Time (sec)

-10<DEC< 10

3101

6

119

3101

125

Table 11

Query Time for (RAI, RA2, DEC 1, DEC 2) = (0, 60, -10, 10)

25

METHOD 1

w

L_

Condition

Responses

Query Time (see)

Sources in Box

Attribute Compare
Time (see)

Total Time (see)

RA>10

18228

26

2533

.218

244

RA < 70

21846

28

2533

152

180

DEC _> 40

3527

8

2533

128

136

DEC _< 80

21544

37

2533

278

815

W

_I

W

f_

m

m

METHOD 2 METHOD 3

Condition

Responses

Query Time (see)

Sorting Time

ID Compare
Time (see)

Sources in Box

Total Time (see)

10_<RA_<70

18228

16

<1

<1

40 _<DEC < 80

3225

3

<1

Condition

Responses

Query Time (see)

Attribute

Compare Time
(sec)

2533

19

Sources in Box

Total Time (see)

10<RA<70

18228

16

134

2533

150

m

Table 12

Query Time for (RAI, RA 2, DEC D DEC 2) = (10, 70, 40, 80)

m

26

W

METHOD 1

w

Condition

Responses

Query Time (sec)

Sources in Box

Attribute Compare
Time (sec)

Total Time (see)

RA > 10

18228

27

1446

,219

246

RA<30

11628

15

1446

83

98

DEC >_-80

21509

35

1446

775

810

DEC < -40

4532

10

1446

154

164

w

METHOD 2 METHOD 3

=
w

E :

W

w

Condition

Responses

Query Time (see)

Sorting Time

ID Compare "
Time (see)

Sources in Box

Total Time (see)

10<RA<30

8010

11

<1

-80 < DEC <-40

4195

3

<1

<1

1446

15

Condition

Responses

Query Time (see)

Attribute

Compare Time
(see)

Sources in BOx

Total Time (see)

10<RA___30

8010

11

52

1446

63

Table 13

Query Time for (RAI, RA 2, DEC 1, DEC2) = (10, 30, -80, -40)

- 27

METHOD 1

L_

L

Condition

Responses

Query Time (sec)

Sources in Box

Attribute Compare
Time (sec)

Total Time (sec)

RA>_0

21846

41

774

,263

304

RA<30

11628

16

774

74

90

DEC > -40

17314

30

774

624

654

DEC < -30

6093

13

774

223

236

w

7 -

w

METHOD 2 METHOD 3

Condition

Responses

Query Time (see)

Sorting Time

ID Compare
Time (sec)

Sources in Box

Total Time (sec)

0<RA<30

11628

10

<1

<1

774

15

-40 < DEC <-30

1561

3

<1

Condition

Responses

Query Time
(see)

Attribute

Compare Time
(sec)

Sources in Box

Total Time

(see)

40 < DEC <-30

1561

3

64

774

67

Table 14

Query Time for (RA l, RA 2, DEC l, DEC 2) = (0, 30, -40, -30)

L

"

28

w

L

w

== :

__-_-

W

Ezl

METHOD 1

Condition

Responses

Query Time (sec)

Sources in Box

Attribute Compare
Time (see)

Total Time (sec)

RA_0

21846

41

21846

256

306

RA < 360

21846

29

21846

140

169

DEC > -90

21846

37

21846

791

828

DEC _< 90

21846

38

21846

783

821

METHOD 2 METHOD 3

Condition

Responses

Query Time (sec)

Sorting Time

ID Compare
Time (sec)

Sources in Box

Total Time (sec)

0<RA<360

21846

18

<1

<1

-90 _<DEC _<90

21846

15

<1

Condition

Responses

Query Time (see)

Attribute

Compare Time
(see)

21846

35

Sources in Box

Total Time (see)

0_RA_<360

21846

18

137

21846

155

Table 15

Query Time for (RA l, RA 2, DEC 1, DEC2) = (0, 360, -90, 90)

29

w

. Retrieve all sources that meet the above two conditions and get two ID sets. Sort and

compare the ID sets; then perform the comparison for the intersection of two ID sets

and examine glat. The responses for the retrieval that meet the three conditions are

the "winners."

For the general case, compound retrievals will be required to meet additional conditions.

When the volume of response IDs is smaller, the examination of attributions will be less

burdensome.

The numericalresults of this experiment, which are summarized in Table 28, show that

alternative 3 is best.

=

w

w

J

w

r =

w

m

5.3 Experimental Results

The query experiment focused on the rectangle query and the compound query.

5.3.1 Query Sources in a Rectangle

Eleven combinations of (RA I, RA 2, DEC 1, DEC2) were evaluated:

1. (0, 10, -90, -80)

2. (160, 180, 80, 90)

3. (50, 60, 30, 40)

4. (0, 20, -20, 30)

5. (20, 60, -10, 0)

6. (20, 50, 2, 40)

7. (0, 60,-10, 10)

8. (10, 70, 40, 80)

9. (10, 30,-80,-40)

10. (0, 30, -40, -30)

m

w

30

E

m_

U

LJ

W

m-._l

m t

--=
D

m_

L.

W

L_--

b--"_i

11. (0, 36,-90, 90)

The query experiment contained ten items:

1. Find all sources by RA

2. Find all sources by DEC

3. Find all sources in the right ascension interval (RA 1, RA 2)

4. Find all sources in the declination interval (DEC 1, DECz)

5. Find all sources in the re_tangle (RA1, RA 2, DEC 1, DEC- e)

6. Find all sources by conditions

7. Find all sources by optimal interval query and ID set comparison

8. Find all sources by two interval and comparison of two ID sets is made

9. Examine ID set intersections

10. Examine ID set orders

The experimental results were shown in Tables 5 through 15.

A general comparison of query efficiency for the three algorithms was previously shown in

Table 4, while the percent of time for comparison between attribution is shown in Table 16.

5.3.2 Compound Query Experiment

The compound query experiment was designed to find sources that meet three conditions that

were shown in Section 5.2:

fnu 12/fnu 25 > u,

fnu 60 > v, and

I glatl > w

where u, v, and w are given at random in the domains of interest.

W

31

L _

w

Box Number

1
2
3
4
5
6
7
8
9

10
11

Method 1
Mean Value

Attribute Comparison

84
89
92
89
92
91
89
90
91
89
90 ,

Method 2

ID Comparison

<3
<3
<3
<6
<4
<4
<4
<3
<7
<7
<3

Method 3

Attribute Comparison

86
<3
27
89

91
82
95
89
94
96
88

t,l=¢

Table 16

Percent of Query Time

w

v

Q

The values u, v, and w were selected to be:

1. (0.5, 1.0, 30.0)

2. (3.7, 0.0, 20.0)

3. (0.0, 0.6, 10.0)

4. (0.7, 0.0, 30.0)

5. (0.0, 0.0, 0.0)

6. (0.5, 0.1, 90.0)

7. (1.0, 0.2, 70.0)

8. (1.5, 0.3, 50.0)

9. (2.0, 0.35, 45.0)

10. (2.5, 0.4, 42.0)

11. (3.0, 0.5, 40.0)

32

= i

t

J U
i _!1i

The numerical results are presented in Tables 17 through 27. The experiment showed that

method 3 typically outperformed both methods 1 and 2. The reason is that the query time to

sort by one condition and the comparison between two ID sets for the intersection of the two

sets is fast. The experimental data and statistical data show that for each attribute, the

[glat [examination time was 0.02 seconds, as is demonstrated by the results of Table 29.

The method that used three ID sets for comparison is not good even when there are only a few

hundred candidates. For a larger number, the method becomes increasingly less efficient.

Method 1 and method 2 are the same in principle. Their efficiencies in practice depend upon

the volume of responses for each condition. Generally, method 1 and method 2 are much

worse than method 3 (see Table 28).

The query for getting the ID of an object is fast using CDM or MCDM (see Table 30).

Looking for some attributes of the object ID and then making a comparison is slower than

getting the two ID sets and then making the comparison between those sets (see Table 29).

lid

w

p _

H

33

w

r

!

w

W

m

w

Query
Condition

Responses

Query
Time

Meet
Condition

Responses

Meet
Condition

Responses

Total Time

Method 1

fnu 121fnu 25>0.5

20066

33

fnu 60> 1.0

818

abs_l_) > 30.0

568

740

Method 2

fnu 60> 1.0

1312

fnu 12/fnu 25>0.5

818

abs (glat) > 30.0

568

61

Method 3

fnu 12/fnu 25>0.5

20066

33

ID- mt_tion set

818

abs (glat) > 30.0

568

69

Table 17

Compound Query - I of II

fnu 60> 1.0

1312

2

L_

t
w

34

ImmP

LJ

w

!m¢

lllal¢

L_

W

m

Query
Condition

Responses

Query
Time

Meet
Condition

Responses

Meet
Condition

Responses

Total Time

Method 1

fau 12/fnu 25>3.7

2358

fnu 60>0.0

2358

abs (glaO > 20.0

1768

108

Method 2

fnu 60>0.0

21846

36

fnu 12/fnu 25 > 3.7

2358

abs(glat) > 20.0

1768

823

Method3

fnu 12/fnu 25>3.7

2358

ID-m_rsection

2358

abs(glat) >20.0

1768

106

fnu 60>0.0

21846

33

Table 18

Compound Query - 2 of 11

35

w

m

w

m

r_
w

w

r_

m

Query
Condition

Responses

Query
Time

Meet
Condition

Responses

Meet
Condition

Responses

Total Time

Method 1

fnu 12/fnu 25 > 0.0

21846

36

fnu 60>0.6

Method 2

fnu 60>0.6

2461

6

fnu 12/fnu 25>0.0

Method 3

fnu 12/fnu 25>0.0
-- m

21846

36

1D-intersection set

2461

abs (glat) > 10.0

2461

824

m

2461

abs (glat) > 10.0

2461

119

2461

abs (glat) > 10.0

2461

106

fnu 60>0.6

2461

2

Table 19

Compound Query - 3 of 11

E

r -

w

36

m

E _
W

H

i
_=

• L

IIj

1

Query
Condition

Responses

Query
Time

Meet
Condition

Responses

Meet
Condition

Responses

Total Time

Method 1

fnu 12/fnu 25>0.7
w

17280

30

fnu 60>0.0

Method 2

fnu 60>0.0

21846

36

fnu 12/fnu 25>0.7

Method 3

fnu 12/fnu 25>0.7

17280

31

D-intersection set
w

17280

abs (glat) > 30.0

11822

840

m m

17280

abs (glat) > 30.0

11822

1001

17280

abs(glat) > 30.0

11822

255

Table 20

Compound Query - 4 of 11

fnu 60>0.0

21846

23

W

37

Z

w

w

2 =

r--

w

H

W

Query
Condition

Responses

Query
Time

Meet
Condition

Responses

Meet
Condition

Responses

Total Time

Method 1 Method 2

fnu 12/fnu 25>0.0

21846

36

fnu 60>0.0

21846

abs (gla0 > 0.0

21846

1063

fnu 60>0.0

21846

36

fnu 12/fnu 25>0.0

21846

abs (gla0 > 0.0

21846

1065

Method 3

fnu 12/fnu 25>0.0

21846

35

D-intersection set

21846

abs (glaO > 0.o

21846

293

fnu 60>0.0

21846

21

Table 21

Compound Query - 5 of 11

w

38

F_

w

W

o

w

Query
Condition

Responses

Query
Time

Meet
Condition

Responses

Meet
Condition

Responses

Total Time

Method 1

fnu 12/fnu 25>0.5

20066

32

fnu 60>0.1

Method 2

fnu 60>0.1

20868

36

fnu 12/fau 25>0.5

Method 3

fau 12/fnu 25>0.5

20066

34

D-intersection set
m

19088

abs (glat) > 90.0

0

962

19088

abs (glat) > 90.0

0

994

19O88

abs (glat) > 90.0

0

280

fnu 60>0.1

20868

21

W

Table 22

Compound Query - 6 of 11

w

39

IL 3

Query
Condition

Responses

Query
Time

Meet

Condition

Responses

Meet
Condition

Responses

Total Time

Method 1

fnu 12/fnu 25> 1.0

Method 2

fnu 60>0.2

Method 3

fnu 12/fnu 25>1.0

13262

25

fnu 60 > 0.2

4987

abs (slat) > 70.0

706

550

12734

24

fnu 12/fnu 25> 1.0

4987

abs (slat) > 70.0

706

529

13262

25

D-intersection set

4987

abs (slaO > 70.0

706

125

fnu 60>0.2

12734

16

u

H

Table 23

Compound Query - 7 of 11

u

W

O

u
W

m

40

w

m
w

v

w

Query
Condition

Responses

Query
Time

Meet
Condition

Responses

Meet
Condition

Responses

Total Time

Method 1

fnu 12/fnu 25> 1.5

9549

18

fnu 60>0.3

971

abs (glat) > 50.0

278

366

Method 2

fau 60>0.3
w

6833

14

fnu 12/fnu 25> 1.5

971

abs (glat) > 50.0

278

268

Table 24

Compound Query - 8 of 11

Method 3

fnu 12/fnu 25> 1.5

9549

19

ID-intersection set

971

abs (glaO > 50.0

278

68

fnu 60>0.3

6833

I0

w

w

z :

v

41

L

L_

E_

_Z

I=a
E

Query
Condition

Responses

Query
Time

Meet
Condition

Responses

Meet
Condition

Responses

Total Time

Method 1

fnu 12/fnu 25>2.0

6943

13

Method 2

fnu 60>0.35

5351

fnu 12/fnu 25>2.0

6943

1512

Method 3

fnu 60>0.35

5351

fnu 60>0.35

494

abs (gla 0 > 45.0

157

261

fnu 12/fnu 25>2.0

494

abs (glat) > 45.0

157

210

ID-intersection set

494

abs 0glat) > 45.0

157

45

m_

Table 25

Compound Query - 9 of 11

42

." 7

L J

w

E =
E_

LA
W

U

W

__'--=_

Query
Condition

Responses

Query
Time

Meet
Condition

Responses

Meet
Condition

Responses

Total Time

Method 1

fnu 12/fnu 25>2.5

5088

II

fnu 60>0.4

278

abs (glat) > 42.0

115

196

Method 2

fnu 60>0.4

4332

fnu 12/fnu 25>2.5

278

abs (glat) > 42.0

115

168

Method 3

fnu 12lfnu 25 > 2.5

5088

II

ID-intersection set

278

abs (glat) > 42.0

115

31

Table 26

Compound Query - 10 of 11

fnu 60>0.4

4332

m

B

W

43

- .

L_

Query
Condition

Responses

Query
Time

Meet

Condition

Responses

Meet
Condition

Responses

Total Time

Method 1

fnu 12/fnu 25>3.0

3856

fnu 60>0.5

141

abs (glat) > 40.0

66

148

Method 2

fnu 60>0.5

3175

fnu 12/fnu 25>3.0

141

abs (glat) > 40.0

66

122

Method 3

fnu 12/fnu 25 > 3.0

3856

9

D-intersection set

141

abs (glat) > 40.0

66

20

fnu 60>0.5

3175

Table 27

Compound Query - 11 of 11

44

= .

r •

=2

r_

m_

[]

W

INN

NO.

1
2

3

4
5
6

7
8
9

10
11

Responses

568
1768
2461

11822
21846

0

706
278
157

115
66

Method 1

Time (sec)

740
108
824

840
1063
962

550
366
261

196
148

Method 2

Time (sec)

61

823
119

1001
1065

994

529
268
210

168
122

Method 3

Time (sec)

69
106
106

255
293
280

125
68
45

31
20

Table 28

Compound Query Time

45

--=

w

= =

No RA_ RA<

(sec/ID) (sec/ID)

1 0.0018 0.0011

2 0.0013

3 0.0010 0.0013

4 0.0018 0.0013

5 0.0009 0.0013

6 0.0009 0.0013

7 0.0018 0.0013

8 0.0014 0.0013

9 0.0015 0.0013

10 0.0019 0.0014

11 0.0019 0.0013

0.0015

DEC >

(sec/ID)

0.0016

0.0033

0.0022

0.0018

0.0019

0.0020

0.0019

0.0023

0.0016

0.0017

0.0017

DEC <

(sec/ID)

0.0030

0.0017

0.0017

0.0018

0.0019

0.0018

0.0019

0.0017

0.0022

0.0021

0.0017

(RA I,RA 2)

(sec/ID)

0.0014

0.0178

0.0008

0.0013

0.0013

0.0008

0.0009

0.0014

0.0009

0.0008

(DEC 1,DEC2)

(sec/ID)

0.0029

0.0022

0.0009

0.0041

0.0011

0.0023

0.0009

0.0007

0.0019

0.0007

fnu •/fnu x >

(sec/ID)

0.0016

0.0017

0.0016

0.0017

0.0016

0.0016

0.0019

0.0019

0.0019

0.0022

0.0020

fnu *>

(sec2ID)

0.0023

0.0016

0.0024

0.0016

0.0016

0.0017

0.0019

0.0020

0.0022

0.0021

0.0022

Mean 0.0013 0.0019 0.0020 0.0027 0.0017 0.0013 0.0020

Total mean 0.0018

Table 29

ID-based Query time

L_

46

Time

No.

RA

&

DEC

I 0.0121

2

3 0.0122

4 0.0119

5 0.0118

6 0.0121

7 0.0121

8 0.0119

9 0.0120

I0 0.0120

11 0.0117

RA

&

DEC

0.0061

0.0073

0.0071

0.0055

0.0066

0.0065

0.0064

0.0070

0.0071

0.0063

0.0064

RA

&

DEC

0.0360

0.0364

0.0365

0.0362

0.0364

0.0362

0.0365

0.0363

0.0360

0.0360

0.0362

RA

&

DEC

0.0059

0.0347

0.0365

0.0363

0.0363

0.0363

0.0364

0.0361

0.0340

0.0366

0.0358

DEC

0.0069

0.0066

0.0063

0.0390

0.0363

0.0384

0.0074

0.0065

0.0410

0.0079

Glat

0.0415

0.0288

0.0276

0.0116

0.0108

0.0119

0.0168

0.0402

0.0425

0.0468

0.0355

Mean 0.0120 0.0066 0.0362 0.0332 0.0167 0.285

Total weighted mean 0.0214

Table 30

Time for obtaining attributes
and examining conditions (seconds/attribute)

u

w

w

47

6.0 CONCLUSIONS

z=_S

= :

The experiments reported upon in this document demonstrated the practical efficiency of the

methods used in CDM and MCDM. Following are the conclusions from the experiments;

these conclusions will be re-examined and refined as Arachnid evolves over the course of the

project.

° The creation time for the complete LFSC database can be estimated from the

empirical relationship between the number of sources and the creation times for sub-

sets of the database, as shown in Tables 1 and 2. The approximate time for creating

the full LFSC database (containing 173,000 sources) is estimated to be 26 hours. If a

more powerful SUN Sparcstation were used, then this time would be reduced

substantially. However, since the database will be created only once, its creation time

is a relatively minor concern.

o The storage space required for database files is approximately 120% of the size of the

initial database. For LFSC, the raw data is approximately 240 MB, so that the

Arachnid LFSC database will be about 290 MB.

, Retrievals by CDM (and MCDM) for queries with one condition (e.g., "= ", "< ",

"> ") are fast: the mean time is 0.0018 seconds/ID. The sorting and comparing of ID

sets is also fast.

However, taking the attributes of objects by ID and then testing them against specified

conditions is slower, having a meantime of 0.0214 second/attribute. In practice, the

efficiency and speed of this approach are dependent on the relationship between the

ID and the attribute, as well as on the current environment.

The experimental data shows that between 84 % and 96 % of query overhead is for

comparisons with one condition. The time for ID sorting and comparison with two

ID sets is not over 7% of the query time. In Table 16, the percent of query time for

comparing attributes is shown.

m

==,

48

z :

Z

4, The CDM (and MCDM) query times are reasonable, but not extremely fast. CDM

can be used as the basis of Arachnid if the best algorithms are selected. For example,

the ID query should be tested for multiple conditions. For a massive database, the ID

query times will increase only marginally over the times reported here, because ID

query by B-tree index grows as O[lg(n)]. Consequently, the overhead will not be

substantial; moreover, the use of parallel algorithms will speed-up the non-index

operations.

L_

= :

L,O

-Z

49

APPENDIX A

REFERENCES

z

w

,

2.

3.

.

C Data Manager User's Guide, Database Technologies, March 15, 1990.

Proposal from the Infrared Processing and Analysis Center, NASA/JPL, 1992.

IRA$ Faint Source Survey, Infrared Processing and Analysis Center, NASA/JPL,

1992

Arachnid Database Retrieval Algorithm_ and Resource Allocation, MIMD Systems,

Inc. under contract NAS7-1156, January, 1993.

w

w

w

b .

i z

U

&_-

50

=

1.' Report No.

4. Thle and Subt?tle

A Survey of Object-Oriented
Database Management Systems:

Technical Report #6

7. Auzhor(s)

Robert E. Larson
Paul L. McEntire

Inhn __ O'Reilly
9. Performing Organization Name and Address

MIMD Systems, Inc.
1301 Shoreway Road, #200
Belmont, CA 94002

12. Sponsoring Agency Nar'_ and Address

NASA Resident Office - JPL
4800 Oak Grove Drive

Pasadena, CA 91109

5. Report Date

_0/93
• enOrrn_ Organ_ation Code

8. Performing Organization Report No.

10. Work Ur_t No.

II. Contract or Grant No.

NAS7-1156

15. Supplementary No|cs

16. Abstract

Using C Data Manager (CDM), a detailed series of experiments was designed and conducted
on a Sun Sparcstation. The primary results and analysis of die experiment are provided in thL,
report. The experiments involved creating the Long-folhn Faint Source Catalog (LFSC)
database, and then analyzing it with respect to: (1) the relationships between the volume of
data and the time required to create a database; (2) the storage requirements of the database
files; and (3) the properties of query algorithms.

The.effort focused on defining, implementing, and analyzing seven experimental scenarios: (1
find all sources by right ascension, RA; (2) find all sources by declination, DEC; (3) find all
sources in the right ascension interval (RA 1, RA2); (4) find all sources in the declination

interval (DEC 1 , DEC2); (5) find all sources in the rectangle defined by (RA I, RA 2, DEC 1 ,
DEC2); (6) find all sources that meet certain compound conditions; and (7) analyze a variety
of query algorithms.

17. Key Words (Suggested by Author(sl)

Object-Oriented
DBMS

Parallel Computers

18. Oi_lrlb_tion Statemenl

Unclassified/Unlimited

Secufty Claa_. (o(this pa_)

Unclassified

22. Price

